Extend Least Square Method

Yanping wang Beijing yanshan hongta 17 - 2 – 602 <u>Ww yypp@163.com</u>

Abstract. The Extend Least Square Method is a new method for data regression, which made the computation and results for data regression of one variable linear, multivariate linear and one variable nonlinear and multivariate nonlinear data calculating more easy and correct.

1. Principium

When studying the relating relations between the two variable numbers (x, y), we can get a series of binate data $(x_1, y_1, x_2, y_2, \dots, x_m, y_m)$, describing the data into the x - y orthogonal coordinate system(Chart), the points are found near a curve. suppose the one-variant non-linear variant of the curve such as (Formula 1)

5 10 11

There into, a₀, a₁ and k are arbitrary real numbers

To set the curve variant, the numbers of a_0 , a_1 and k, make the minimal value of the least square sum ($\sum (y_i - y)^2$) of the difference of the real observation value of y_i and the computing value of y using (Formula 1) as the optimization superior criterion.

Order:

$$\Phi = \sum \left(y_i - y \right)^2 = 0 \tag{2}$$

Take (Formula 1) to (Formula 2) to get :

$$\Phi = \sum \left(y_i - a_0 - a_1 x_i^k \right)^2 = 0$$
⁽³⁾

When the square of $\sum (y_i - a_0 - a_1 x_i^k)$ is the smallest, we can use function ϕ to get the partial differential coefficients of a_0 , a_1 and k, make the three partial differential coefficients zero.

$$\frac{\partial \Phi}{\partial a_0} = -2\sum \left(y_i - a_0 - a_1 x_i^k \right) = 0 \tag{4}$$

$$\frac{\partial \Phi}{\partial a_1} = -2\sum x_i^{\ k} \left(y_i - a_0 - a_1 x_i^{\ k} \right) = 0$$
⁽⁵⁾

$$\frac{\partial \Phi}{\partial k} = -2\sum x_i^k Ln(x_i) \left(y_i - a_0 - a_1 x_i^k \right) = 0$$
⁽⁶⁾

Get three variant groups about a_0 , a_1 and k which are the unknown numbers, edit the procedure for computer solve.

2. Example

Thirty suit data of three dimensions

Function(y)	Variable	Value of variable						
200	x ₁	50	90	130	150	176	183	
	x ₂	2	17	93	180	400	500	
300	x ₁	62.1	100	140	180	230	284	
	x ₂	0.01	0.32	4.1	25	125	500	
400	x ₁	142	200	240	280	320	360	
	x ₂	0.01	1.12	8	38	128	340	
500	x ₁	0.01	0.1	0.45	2.7	11	32	
	x ₂	500	500	500	500	500	500	
600	x ₁	303	310	320	330	350	360	
	x ₂	0.01	0.011	0.04	0.08	0.35	0.65	

Model of Extend Least Square Method regression

$$y = a_0 + a_1 x_1^{k1} + a_2 x_1^{k2} + a_3 x_2^{k1} + a_4 x_2^{k2} + a_5 x_1^{k3} x_2^{k4} + a_6 x_1^{k5} x_2^{k6}$$
(7)

Function in Formula 7:

y - Objective function

 x_1 – Data of first dimensions

 x_2 - Data of secondly dimensions

Coefficient and power of model

Coefficient of Model			Power of Model		
a ₀	11.8311216825845	\mathbf{k}_1	0.109999999998985		
a ₁	220.07825368487	k ₂	1.17999999999898		
a ₂	0.322564255110857	k ₃	0.649999999998985		
a ₃	-167.828014176716	k ₄	0.319999999998985		
a_4	0.0272258975662725	k ₅	0.699999999998985		
a ₅	-0.14352770677907	k ₆	1.05		
a ₆	-0.00118948794031524				

Test parameter of model

Parameter of test	Value		
Correlation coefficient(R)	0.999949241084384		
Biggest error	4.68829455350703		
Equal error	1.104941		
Equal relating error	0.0028556354582		

First dimensions data is $x_1\,$, secondly dimensions is x_2 and objective function is y, curved face diagram of model

3. Conclusion

(1). Extend Least Square Method use the value of computing power to make the model function curves in different rates, to draw up the curves with different curve rates. It saves the complex ways of setting mechanism model and disposing linearization and makes the regression model and data drawing up better.

- (2). Multiple nonlinear data regression in Extend Least Square Method , all variable and objective function, is at the same time the once regression mathematical model, since the regression , not only consider the contribution of objective function the variants take, and also consider the effects among the variants, so as to make the model correct.
- (3). In the Extend Least Square Method Theory, the variant data can have many variants x^{k1} , x^{k2} , ..., x^{kn} , i.e.(Formula 8). with the utility of the character, it can make the data more correct.

$$y = a_0 + a_1 x^{k_1} + a_2 x^{k_2} + \dots + a_n x^{k_n}$$
 (8)