Extend Least Square Method

Yanping wang
Beijing yanshan hongta 17-2-602
Ww yypp@163.com

Abstract

The Extend Least Square Method is a new method for data regression, which made the computation and results for data regression of one variable linear, multivariate linear and one variable nonlinear and multivariate nonlinear data calculating more easy and correct.

1. Principium

When studying the relating relations between the two variable numbers (x, y), we can get a series of binate data $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2} \ldots . . \mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$, describing the data into the $\mathrm{x}-\mathrm{y}$ orthogonal coordinate system(Chart), the points are found near a curve. suppose the one-variant non-linear variant of the curve such as (Formula 1)

$$
\begin{equation*}
\mathrm{y}=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}_{\mathrm{i}}{ }^{\mathrm{k}} \tag{1}
\end{equation*}
$$

There into, $\mathrm{a}_{0}, \mathrm{a}_{1}$ and k are arbitrary real numbers
To set the curve variant, the numbers of a_{0}, a_{1} and k, make the minimal value of the least square sum $\left(\Sigma\left(y_{i}-y\right)^{2}\right)$ of the difference of the real observation value of y_{i} and the computing value of y using (Formula 1) as the optimization superior criterion.

Order:

$$
\begin{equation*}
\Phi=\sum\left(y_{i}-y\right)^{2}=0 \tag{2}
\end{equation*}
$$

Take (Formula 1) to (Formula 2) to get :

$$
\begin{equation*}
\Phi=\sum\left(y_{i}-a_{0}-a_{1} x_{i}^{k}\right)^{2}=0 \tag{3}
\end{equation*}
$$

When the square of $\sum\left(y_{i}-a_{0}-a_{1} x_{i}{ }^{k}\right)$ is the smallest, we can use function φ to get the partial differential coefficients of a_{0}, a_{1} and k, make the three partial differential coefficients zero.

$$
\begin{align*}
& \frac{\partial \Phi}{\partial a_{0}}=-2 \sum\left(y_{i}-a_{0}-a_{1} x_{i}^{k}\right)=0 \tag{4}\\
& \frac{\partial \Phi}{\partial a_{1}}=-2 \sum x_{i}^{k}\left(y_{i}-a_{0}-a_{1} x_{i}^{k}\right)=0 \tag{5}\\
& \frac{\partial \Phi}{\partial k}=-2 \sum x_{i}^{k} \operatorname{Ln}\left(x_{i}\right)\left(y_{i}-a_{0}-a_{1} x_{i}^{k}\right)=0 \tag{6}
\end{align*}
$$

Get three variant groups about a_{0}, a_{1} and k which are the unknown numbers, edit the procedure for computer solve.

2. Example

Thirty suit data of three dimensions

Function(y)	Variable	Value of variable					
200	x_{1}	50	90	130	150	176	183
	x_{2}	2	17	93	180	400	500
300	x_{1}	62.1	100	140	180	230	284
	x_{2}	0.01	0.32	4.1	25	125	500
400	x_{1}	142	200	240	280	320	360
	x_{2}	0.01	1.12	8	38	128	340
500	x_{1}	0.01	0.1	0.45	2.7	11	32
	x_{2}	500	500	500	500	500	500
600	x_{1}	303	310	320	330	350	360
	x_{2}	0.01	0.011	0.04	0.08	0.35	0.65

Model of Extend Least Square Method regression

$$
\begin{equation*}
y=a_{0}+a_{1} x_{1}{ }^{k 1}+a_{2} x_{1}{ }^{k 2}+a_{3} x_{2}{ }^{k 1}+a_{4} x_{2}{ }^{k 2}+a_{5} x_{1}{ }^{k 3} x_{2}{ }^{k 4}+a_{6} x_{1}{ }^{k 5} x_{2}{ }^{k 6} \tag{7}
\end{equation*}
$$

Function in Formula 7:
$\mathrm{y}-$ Objective function
x_{1} - Data of first dimensions
x_{2} - Data of secondly dimensions

Coefficient and power of model

Coefficient of Model		Power of Model	
a_{0}	11.8311216825845	k_{1}	0.109999999998985
a_{1}	220.07825368487	k_{2}	1.17999999999898
a_{2}	0.322564255110857	k_{3}	0.649999999998985
a_{3}	-167.828014176716	k_{4}	0.319999999998985
a_{4}	0.0272258975662725	k_{5}	0.699999999998985
a_{5}	-0.14352770677907	k_{6}	1.05
a_{6}	-0.00118948794031524		

Test parameter of model

Parameter of test	Value
Correlation coefficient (R)	0.999949241084384
Biggest error	4.68829455350703
Equal error	1.104941
Equal relating error	0.0028556354582

First dimensions data is \mathbf{x}_{1},secondly dimensions is \mathbf{x}_{2} and objective function is \mathbf{y}, curved face diagram of model

3. Conclusion

(1). Extend Least Square Method use the value of computing power to make the model function curves in different rates, to draw up the curves with different curve rates. It saves the complex ways of setting mechanism model and disposing linearization and makes the regression model and data drawing up better.
(2). Multiple nonlinear data regression in Extend Least Square Method, all variable and objective function, is at the same time the once regression mathematical model, since the regression, not only consider the contribution of objective function the variants take, and also consider the effects among the variants, so as to make the model correct.
(3). In the Extend Least Square Method Theory, the variant data can have many variants $x^{k 1}, ~ x^{k 2}, \ldots x^{k n}$, i.e.(Formula 8). with the utility of the character, it can make the data more correct.

$$
\begin{equation*}
y=a_{0}+a_{1} x^{k 1}+a_{2} x^{k 2}+\ldots \ldots+a_{n} x^{k n} \tag{8}
\end{equation*}
$$

