Thread Force calculation

Thread Size

Input the thread size Input the Thread pitch	Size := 10mm Pi := 1.5mm	
Using machinery hand book calculating thread nomenculture(This calculated dimensions are approx.only)		
Basic Major diameter of the thread	d := Size	
Basic pitch diameter	$d2 := \text{Size} - 0.64951 \mathfrak{P}i$	d2 = 9.026mm
Basic root or minor diameter	d1 := Size – 1.082532Pi	d1 = 8.376mr
Induced thread force from tightening torque		
Tt := (2 2.5 3 3.5 4 5)·kgf·m	Tt = (19.613 24.517 29.42 34.323	39.227 49.033) J
Using relation between torque and clamping force Hand book-P.no:1408		

- $Tf = Kj \cdot Ff \cdot d$
- Kj = "Torque co efficient" Ff = "force due to torque" d = Size
- Kj := 0.2 $Ff := \frac{Tt}{Kj \cdot d}$

$$Ff = \left(9.807 \times 10^{3} \quad 1.226 \times 10^{4} \quad 1.471 \times 10^{4} \quad 1.716 \times 10^{4} \quad 1.961 \times 10^{4} \quad 2.452 \times 10^{4}\right) N$$

What is the above force meant?Can we take the above force as acting over the shaft?

Machinary hand book

Axial load developed due to turning force

Turning force required to axial tension T1

T2 over come the thread friction T3 overcome the underhead friction

$$\alpha := 30 \text{deg}$$
 $\mu := \text{Kj}$ len := 30.5mm

$$b := 1.5 d$$
 $\mu 2 := 0.165$

$$(Tt) = Pb \cdot \left[\frac{len}{2 \cdot \pi} + \frac{d2 \cdot \mu}{2 \cdot \cos(\alpha)} + \frac{(d+b) \cdot \mu^2}{4} \right]$$

Ff1 := 4 · Tt · $\pi \cdot \frac{\cos(\alpha)}{2 \cdot len \cdot \cos(\alpha) + 2 \cdot d2 \cdot \mu \cdot \pi + \mu^2 \cdot \pi \cdot \cos(\alpha) \cdot d + \mu^2 \cdot \pi \cdot \cos(\alpha) \cdot b}$

 $Ff1 = \left(2.831 \times 10^3 \ 3.539 \times 10^3 \ 4.247 \times 10^3 \ 4.955 \times 10^3 \ 5.662 \times 10^3 \ 7.078 \times 10^3\right) N$

Referring bolts manufacturers catalog approximately 15% of force created by the bolts remaining 85% are utilised to overcome the friction

Axial force developed by bolts 15% of Ff1

Ff2 := 15%·Ff1

 $Ff2 = \left(424.673\ 530.841\ 637.009\ 743.177\ 849.345\ 1.062 \times 10^3\right) N$

Can we conclude this force is induced axially by bolts while fastening?