
Chapter 4

The Air-Bearing Model

The purpose of this chapter is to achieve a model for the air-cushion conveyor
air-bearing. This model will be used in the static design of the air-cushion
conveyor. The expressions relate parameters as fluid thickness, load pressure,
supply pressure, drag force, temperature rise, flow and orifice diameter.

Fluid Mechanics theory can be used to obtain the parameters that govern the
flow under the belt. To avoid starting from scratch, the approach adopted
use a reference in Hydrostatic Lubrication, where the principles are similar.

Hydrostatic lubrication consists in pushing a fluid between the sur-
faces of a kinematic pair by means of an external pressurization sys-
tem (...) the pressurized field allows the lift and the bearing of the
moving member on the fixed member of the pair. [2]

In the air-cushion conveyor the load is carried in one direction and the radius
of curvature of the support is negligible compared to the fluid thickness. This
fits with the rectangular pad hydrostatic bearing, which was found to be the
most adequate as a reference to model the air flow.

4.1 Hydrostatic Lubrication Principle

Fig. (4.1) contains an outline of the principle of hydrostatic lubrication.

The recess (of which the projected area is A) of the bearing pad (2)
of the pair is fed by a pump; the bearing runner (1) is loaded by a
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Figure 4.1: Hydrostatic lubrication principle

force W , Fig. (4.1.a). When the pump begins to run, the pressure in
the recess grows, Fig. (4.1.b), until the ”lifting pressure” p = W/A
is reached Fig. (4.1.c); at this point member (1) is lifted, a lubricant
film builds up to separate the surfaces, and a flow Q is delivered,
due to the pressure step along the clearance Fig. (4.1.d). Different
loads lead to different values of the recess pressure and of the film
thickness h Fig. (4.1.e) and (4.1.f). [2]

4.2 Flow and Pressure Stability

In order to avoid contact between belt and support it is necessary to maintain
a minimum fluid thickness. The flow and pressure under the belt must be
controlled to meet this requirement when the bearing is subjected to load dis-
turbances. The kind of supply system and the bearing configuration chosen
with care can provide the necessary stability.
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4.2.1 Constant Pressure Supply

To have a regular flow trough the orifices it is not practical to use a constant-
flow supply system, due to the large amount of orifices. An alternative is
the constant-pressure supply. The air is provided by a single pump and
distributed to all the orifices by ducts, but in each orifice the flow needs to
be controlled by valves or restrictors.

Figure 4.2: Bearing pad with two recesses and a constant pressure supply

4.2.2 Flow Stability

Pressure, flow, load and fluid thickness are related parameters. The pressure
in the clearance is determined by the load, while flow and fluid thickness
depend on this pressure. A load fluctuation will therefore change the flow
and fluid thickness.

To control the flow a valve can be placed in each orifice. A more practical
solution is to make the orifices with such a diameter that the flow is controlled
automatically for fluid thickness or load disturbances.

The orifices can be drilled with a certain diameter so that the ratio β between
clearance pressure p and supply pressure ps is β = p/ps < 1. In this condition,
an increase in load, decreasing the fluid film thickness, will decrease the flow
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in the orifice. The pressure loss in the orifice will therefore decrease. In the
limit h → 0 =⇒ p → ps.

The ratio β is chosen taking in consideration the expected overload. The
value β = 0.5 provides a non-null fluid film thickness for overloads until ∼
95% of the nominal load pressure.

4.3 Flow in the Clearance

The fluid flow below the belt can be modeled starting with the Navier-Stokes
equations. Further assumptions simplify the model to the Reynolds equa-
tions. The velocity field is obtained integrating the Reynolds equations,
getting expressions depending on the differentials ∂p/∂x and ∂p/∂z. Viscous
stress and flow are derived directly from the velocity field.

4.3.1 Navier-Stokes Equations

Navier-Stokes equations are deduced from the momentum equation (balance
of forces) and fluid constitutive relations. The general form of these equations
for rectangular coordinates is:
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(4.1)

where ρ is the density of the fluid; µ the viscosity; u, v, w are the components
of the velocity vector v and X, Y , Z the components of the resultant body
force.

4.3.2 Continuity Equation

The continuity equation, or the principle of mass conservation, for fluid flow
is stated with the equation:

ρ̇ +
∂

∂x
(ρu) +

∂

∂y
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∂

∂z
(ρw) = 0 (4.2)
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If density is considered to be constant (relatively small temperature and
pressure variations; low Mach number), this equation becomes:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (4.3)

or in compact form:

∇v = 0 (4.4)

4.3.3 Reynolds Equations

Due to the fluid film thickness magnitude, compared with belt width, the flow
in the clearance can be approximated by the flow between infinite parallel
plates, where Reynolds equations may provide satisfactory results for the
velocity field.

The Reynolds assumptions are:

- the thickness of the fluid film (in the y direction) is small compared to
its size in the other directions (the fluid thickness is in the millimeter
order, ∼ 1000 times lower than the belt width);

- consequently the pressure, the density and viscosity can be averaged:
∂p/∂y = 0, ∂ρ/∂y = 0, ∂µ/∂y = 0;

- compared with ∂u/∂y and ∂w/∂y all the other velocity gradients are neg-
ligible. (This may be a reasonable approximation in the clearance but
not in the orifice exit where the flow along y is essential);

- the flow is laminar. No turbulence or vortex exist. (The Reynolds number
Re = ρUh

µ
must be lower than ∼ 2300Re ).

- the body forces and the inertia terms are negligible compared with the
viscous forces.(Air density is relatively low, therefore air weight and
inertia are also small)

- the velocity of the fluid in the surfaces coincide with the surface velocity.
(This is an usual assumption in viscous fluid flow)
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In a developed flow and with the assumptions above, the Navier-Stokes equa-
tions are simplified to the Reynolds equations:

{
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∂x
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ρ∂p
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∂2y

(4.5)

4.3.4 Velocity Field, Flow Rate and Friction

Integrating the Reynolds equations, with boundary conditions u = 0 for
y = 0 and u = U for y = h the components of fluid velocity are:
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The flows in the x and z directions are obtained integrating the velocity in
their normal areas. The flow along the x direction, per unit length 4z is:
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In the z direction, per unit length 4x:
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The Newton formulas for the shear stress are:
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In the surfaces the shear is:
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where the upper sign refers to the y = 0 surface and the lower to y = h.

Considering ∂p/∂x ≈ 0 (infinite length), equation (4.12) becomes:

τx =
µ

h
U (4.14)

The total drag force in the x direction:
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)
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4.4 Flow and Pressure Loss in the Orifices

In the orifice the Reynolds number often has a high value and the
flow becomes ”turbulent.” [2]

In the case of an orifice with non-negligible length l the flow is given by:
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4

√

2

ρ
(ps − p) (4.16)

The ”discharge coefficient” Cd is given by:
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Defining the Reynolds number as:
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This implies that the coefficient Cd is not directly dependent on the diameter:

Cd =

(

1.5 + 13.74

√

µπl

4Qiρ

)

−1/2

for
Qiρ

µπl
> 12.5 (4.20)



CHAPTER 4. THE AIR-BEARING MODEL 24

Figure 4.3: Discharge coefficient for a short tube orifice
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Expression (4.16) can be used to derive the diameter d of the central orifices
if the tube length l and the required flow Qi are given:
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√

4

πCd
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(

ρ
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)1/2

(4.22)

4.5 Bearing Coefficients

The power needed to push lubricant Hp:

Hp = psQt (4.23)

where ps is the supply pressure and Qt the total flow.

The power dissipated due to the relative velocity between the surfaces Hf :

Hf = FfU (4.24)

Assuming that all the dissipated power remains in the lubricant the temper-
ature rise 4T is:

4T =
Hp + Hf

Qtcpρ
(4.25)

cp is the specific heat of air.
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Pressure ratio β:

β =
pmax

ps

(4.26)

The term pmax is the maximum load pressure in the reference configuration.

4.6 Static Response to Overloads

As load increases and h tends to be smaller, the flow will decrease. Con-
sequently the orifice exit pressure will increase compensating for the load
excess. This occurs simultaneously with an increase in stiffness.

The expression that relates h with the additional load ratio W/W0 is:

h

h0
= 6

√

1 − βW/W0

(1 − β)(W/W0)2
(4.27)

In figure (4.4.a) this relation is plotted for several values of β. The curves
describe the fluid film thickness variation with load. Increasing loads decrease
fluid thickness. For lower values of pressure ratio β the air-bearing withstands
higher overloads.

In figure (4.4.b) the bearing stiffness is plotted against the overload ratio, for
several pressure ratios. The lower the pressure ratio is the stiffer is the bear-
ing. The shape of the curves show that the stiffness increase with increasing
load until certain point and then decreases.
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Figure 4.4: Orifice compensation: clearance height (a) and stiffness (b) versus
load



Chapter 5

Design Parameters

The procedures here described will be used to obtain the parameters of an
air-cushion conveyor: resistances, tensions, support geometry and thickness,
drive and pumping power, flow and temperature rise.

So far there are no standard procedures to design an air-supported belt con-
veyor. The method adopted in this chapter is basically a combination of
procedures used to design a troughed belt conveyor and an hydrostatic bear-
ing.

5.1 Design Procedures

The adopted procedure consist in the following steps:

1. Identification and/or specification of initial parameters.

2. Belt selection.

3. Choice of conveyor configuration and location of the most relevant el-
ements.

4. Calculation of the main resistances and tensions on the belt.

5. Sketch of the support structure.

6. Calculation of pumping and drive power

27
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5.2 Initial Parameters

The parameters that come directly from the specifications are:

• conveyor length L [m]

• belt capacity C [Kg/s]

• bulk material density ρbulk [Kg/m3]

• height of lift or fall of the load H [m]

The following parameters do not belong necessarily to specifications but must
be stipulated a priori :

• belt width B [m]

• belt resistance R [N/m]

• belt thickness tbelt[m]

• belt density ρbelt[Kg/m3]

• fluid film thickness hr and/or hc[m]

• belt velocity U [m/s]

• fluid properties: viscosity µ [Ns/m2] and density ρ [Kg/m3]

• scrapers normal force Fscr1 and Fscr2 [N/m]

• friction coefficients between scrapers and belt µbs1 and µbs2

• support material yield strength Sy[Pa]

• safety factors for the support nl (load) and ns (material)

• overload ratio W/W0

• pressure ratio β = pmax/ps

• drive pulley friction factor µp

• drive pulley angle of contact θp

If at the end of the pre-design process the results are not suitable, the pro-
cedures must be repeated from this point.
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5.3 Configuration

The configuration of conveyors depend on the lift or fall of the load and
in the last case if the load is regenerative. If there is no fall or lift the
adopted configuration is as for the inclined conveyor. In all cases the following
elements will be considered:

- Belt and Support Structure

- Fans

- Head, Tail and Drive Pulleys

- Take-up device

- Turnovers

- Scrapers

Figure 5.1: Inclined conveyor

5.4 Main Resistances and Tensions

The main resistances are the force to accelerate the bulk material in the load-
ing zone, the viscous drag force, the return side idler friction, the tangential
component of the weight (belt+bulk material) and the dry friction in the
scrapers. The viscous drag forces are:

Fc =
µ

hc

ULB (5.1)
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Figure 5.2: Declined conveyor

Figure 5.3: Declined conveyor with regenerative load

in the carrying side, and:

Fr =
µ

hr
ULB (5.2)

in the return side. The parameters hc and hr stand for fluid film thickness.

Considering idlers in the return side, the alternative expression for Fr is:

Fr = fe × Q × L × g (5.3)

fe - equipment friction factor
Q[kg/m] - mass of moving parts

If the required power to accelerate the bulk material is provided by the belt,
this will be translated in an additional resistance, given by:

Fb = CU (5.4)
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The resultant from the dry friction forces caused by the primary and sec-
ondary scrapers placed on the head end is:

Fs = Fscr1µbs1B + Fscr2µbs2B (5.5)

whereFscr1 and Fscr2 are the normal forces on the belt, µbs1 and µbs2 the
coefficients of friction.

Using sin φ ≈ H/L, the tangential component of the resultant force exerted
by gravity in the return side Gr is:

Gr = g(ρbelttbelt)B|H| (5.6)

and in the carrying side

Gc =
gC|H|

U
+ Gr (5.7)

tbelt - belt thickness
ρbelt - belt density

5.4.1 Inclined Conveyor

Figure 5.4: Tensions in an inclined conveyor

The set of equations for tensions in the belt, in the case of an inclined con-
veyor is:















T1 = T3 + Fs

T3 = T4 + Fb + Gc + Fc

T1 = Te + T2

T4 + Gr + Fr = T2

(5.8)
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As resultant from the set of equations, the effective tension Te is:

Te = Gc + Fb + Fc + Fs + Fr − Gr (5.9)

5.4.2 Declined Conveyor

Figure 5.5: Tensions in a declined conveyor

In the declined conveyor the set of equations is:














T1 = T4 + Fs

T1 = Te + T2

T4 + Gc = Fb + Fc + T3
T3 = T2 + Fr + Gr

(5.10)

The effective tension is:

Te = Gr + Fb + Fc + Fs + Fr − Gc (5.11)

5.4.3 Declined Conveyor with Regenerative Load

The set of equations for tensions in the belt is:














T1 + Fb + Fc = Gc + T4

T1 = Te + T2

T3 = T4 + Fs

T2 = Fr + Gr + T3

(5.12)

The effective tension is:

Te = Gc − Gr − Fb − Fc − Fs − Fr (5.13)
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Figure 5.6: Tensions in a declined conveyor with regenerative load

5.4.4 Take-up and Working Tensions

Figure 5.7: Tensions in the belt round a drive pulley

The rope friction law relates the effective tension Te, tight side tension T1

and slack side tension T2:

T2 ≥ fstart ×
Te

eµpθp − 1
(5.14)

In the condition above fstart is a factor that depends on the drive system and
starting procedures, θp is the contact angle and µp the friction coefficient
between pulley and belt.

The slack side tension T2 is the take-up tension, and its value must be the
minimum that keeps condition (5.14), i.e. no slip. It can be increased if
theoretical negative tensions exist. The working tension is the maximum
tension in the belt loop Tmax. As the sum of resistances is linear along the
conveyor length Tmax will occur in the extremities or in the loading zone:







Tmax = max(T1, T3, T4 + Fb) Inclined Conveyor
Tmax = max(T1, T3 + Fb, T4) Declined Conveyor
Tmax = max(T1 + Fb, T3, T4) Regenerative Load

(5.15)
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Figure 5.8: Take-up tension

5.5 Belt Selection

Figure 5.9: Fabric belt carcass

Belt selection is based on the maximum working tension and bulk material
properties.

The working tension specify the belt class and strength. Up to certain ten-
sions fabric and solid woven belts are suitable. For higher tensions the most
common is the steel cord belt.

Environment conditions and bulk material properties have certain influence
to chose the carcass type, referring factors as temperature; but their influence
is mostly on the cover, to prevent abrasion and/or corrosion by chemically
aggressive materials.

Reference [1] suggest a safety factor of sf = 10 on the maximum working
tension to specify resistance of fabric belts and sf = 7.5 for steel cord belts.

sf =
R × B

Tmax
(5.16)

The Apex Fenner catalog/guide on conveyor belts, ref. [10], was chosen to
be used on belt selection. The belt can be a Nylon-Polyester fabric, to what
a rubber or PVC compound should serve as bottom and top cover.
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5.6 Support Geometry

The support has a triple utility: as one of the surfaces that form the air
bearing, physical support for the belt and load, and duct for the air flow.

Both carrying and return sides can be implemented with air-bearings. For
the return side the shape does not need to be the same. As there is no load
the trough radius can be higher.

5.6.1 Carrying Side Support Shape

The support must have a trough shape, so that the belt position in the width
direction may be stable. A round geometry was selected, due to its simplicity.
The following calculations and expressions apply to the carrying side.

Figure 5.10: Support geometry

The cross section area of the bulk material is:

Ab =
C

Uρbulk
(5.17)

A minimum distance between the border and the bulk material must exist in
the belt to avoid spillage. It is recommended by ref. [1] that the belt filled
width b must be not less than the empirical value:

b = 0.9 × B − 2 × 0.023 (5.18)
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Figure 5.11: Bulk material section

The expression that relates the radius of curvature of the belt r with the
bulk material area, shadowed in figure (5.11), is:

Ar =
rb

2
−

r2

2
sin(b/r) + r2 sin2(b/2r) tanα (5.19)

where α is the conveying angle and takes values between 0 and 27◦ depending
on the bulk material .

The radius r is obtained solving:

Ab = Ar =⇒ r = f(C, U, α, b, ρbulk) (5.20)

The belt thickness is tbelt � r and the support radius rt can be considered
rt = r.

5.7 Load Pressure

Average load density ρm:

ρm =
Arρbulk + tbeltbρbelt

Ar + tbeltb
(5.21)

The depth of the load is:

d(z) = r

(

cos(
z

r
) − cos(

b

2r
) +

(

sin(
b

2r
) − sin(

z

r
)

)

sin(α)

)

(5.22)

The load p(z) is:

p(z) = gρmd(z) (5.23)
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For the return side, as there is no load, the influence of belt curvature can be
significant. If the radius is high one can consider that the pressure changes
linearly from center to the border of the belt. With this assumption the
pressure at the center is:

pmaxret = 2 × gρbelttbelt (5.24)

5.8 Minimum Distance Between Orifices

Figure 5.12: Structural model of the belt

The following calculations are useful to verify the distance between orifices.
A beam with fixed supports is chosen to model the belt. This assumes a
static belt.

From reference [5] the maximum deflection of the beam in figure (5.12) is:

ymax =
wp(4x)4

384ExIx
(5.25)

with second moment of area Ix:

Ix =
4zt3belt

12
(5.26)

The load w[N/m] is related to the clearance pressure p[N/m2] by:

wp = p ×4z (5.27)

The minimum distance between orifices is:

4x = 4

√

32ymaxExt3belt
p

(5.28)
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The term ymax is a fraction of the fluid film thickness. It must be specified
using the predicted overload W/W0 and it is directly derived from expression
(4.27):

ymax = h 6

√

1 − βW/W0

(1 − β)(W/W0)2
(5.29)

5.9 Support Thickness

The support thickness ls is necessary to calculate the losses in the orifices
and to have an idea of structural costs. From the support shape in figure
(5.13.a) a simplification was taken trough (5.13.b) to (5.13.c).

The corner of the rectangle will have the highest effort. One of the section
with length f is modeled with a beam with a distributed load ps and an axial
load of value e × ps/2. As the goals of this study does not include the final

Figure 5.13: Support structure model

definition of the support geometry, the values of the variables e and f can
be approximated by:

f = B (5.30)

and:

e = r

(

1 − cos
b

2r

)

+ 0.25 (5.31)

The maximum normal stress in the beam is:

σ =
psf

2

2l2s
+

pse

2ls
(5.32)
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The maximum shear stress:

τ =
3psf

4ls
(5.33)

The thickness ls is obtained solving the equation:

Sy = 2nlns

√

σ2

4
+ τ 2 =⇒ ls (5.34)

where Sy is the yield strength of the support material, nl and ns the safety
factors for load and material uncertainties.

5.10 Required Flow

Using the concept of hydraulic resistance, expression (4.9) can turn in the
form:

Qz =
pmax

Rz

(5.35)

with

Rz =
12µB/2

h34x
(5.36)

where 4x is the distance between orifices.

Expression (5.35) is the necessary flow to provide an average fluid film thick-
ness h. It is the flow coming out of the clearance for each side of the belt
and per length 4x. Once the flow is obtained, the local fluid film thickness
as a function of the coordinate z is:

hz = 3

√

12µQz

|∂p/∂z|4x
(5.37)

with

∂p/∂z = gρm

(

− sin(
z

r
) − cos(

z

r
) sin(α)

)

(5.38)
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5.11 Orifice Diameter

The orifice flow Qi is:

Qi = 2Qz (5.39)

The diameter of the orifices is:

d =

√

8Qz

πCd

(

ρ

2(ps − p0)

)1/2

(5.40)

with:

Cd =

(

1.5 + 13.74

√

µπl

8Qzρ

)

−1/2

for
Qiρ

µπl
> 12.5 (5.41)

Cd =

(

2.28 + 64
µπl

4Qiρ

)

−1/2

for
Qiρ

µπl
< 12.5 (5.42)

5.12 Drive and Pumping Power

The drive power is:

Hd = Te × U (5.43)

The pumping power, assuming the same flow source for both the carrying
and return side:

Hp = ps(Qc
L

4xc
+ Qr

L

4xr
) (5.44)

The values of the flow out of the clearance in each side of the belt, per length
4x, Qc and Qr, are obtained using expression (5.35).

5.13 Temperature Rise

In the carrying side the fluid temperature rise is:

4Tc =
Hpc + UFc

Qtc cp ρair

(5.45)
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The term Hpc + U × Fc is the dissipated power, and Qtc the total flow in the
carrying side.

For the return side:

4Tr =
Hpr + UFr

Qtr cp ρair

(5.46)
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