

Scaling parameters
Scaling Requirements Conveying Air Velocity Solids Loading Ratio
Conveying Distance
Pipeline Bore
Pipeline Bends Bend Geometry
Vertical Pipelines Vertically up Vertically Down
Pipeline Material
Stepped Pipelines Conveying Performance

Scaling model $\dot{m}_{p} \propto \frac{1}{L_{e}}$ ------(61) Or alternatively : $\dot{m}_{pl}L_{el} = \dot{m}_{p2}L_{e2} = \text{Const.}$ ------(62) For a constant air mass flow rate and pressure drop due to The conveyed material. Where \dot{m}_{p} = material flow rate and L_{e} = equivalent length of pipeline Equivalent length Conveying distance is expressed in terms of an equivalent length of the total pipeline.this comprises the three main elements of the pipeline routing or geometry. 1. Horizontal pipeline 2. Vertical pipeline

3. Bends

Scaling Model

$$\dot{m}_p \propto A \propto d^2$$
 ------(64)
Or alternatively :
 $\frac{m_{p1}}{d_1^2} = \frac{m_{p2}}{d_2^2} = \text{Const.}$ ------(65)
Working Model
The working form of this scaling model is :
 $\dot{m}_{p2} = \dot{m}_{p1} \times \left(\frac{d_2}{d_1}\right)^2$ ------(66)
Where subscripts 1 and 2 relate to the appropriate pipe bores of the two pipelines

Pipe Bore mm	Air Required		Solids	Conveying Air Velocity m/s		Power
	Pressure bar gauge	Flow Rate Kg/s	Loading Ratio	Inlet	Exit	Required kW
80	3.00	0.102	109	4.2	16.8	23
100	2.20	0.128	87	4.3	13.5	24
125	1.61	0.207	54	5.4	14.0	32
150	1.22	0.405	27	8.6	19.0	53
200	0.73	0.785	14	12.0	20.7	70

Pipe Bore mm	Air Required		Solids	Conveying Air Velocity m/s		Power
	Pressure bar gauge	Flow Rate Kg/s	Loading Ratio	Inlet	Exit	Required kW
80	3.20	0.41	8.2	16.3	67.7	96
100	1.93	0.47	7.1	17.1	49.6	83
125	1.26	0.57	5.8	17.2	38.5	76
150	0.90	0.71	4.7	17.6	33.3	74
200	0.51	1.03	3.2	18.0	27.2	69

18

